RuleRAG: Rule-guided Retrieval-Augmented Generation with Language Models for Question Answering
· 閱讀時間約 10 分鐘
這篇論文探討了知識密集型問答(QA)任務中,如何利用規則來增強現有檢索增強生成(RAG)框架的效能。
這篇論文探討了知識密集型問答(QA)任務中,如何利用規則來增強現有檢索增強生成(RAG)框架的效能。
Fine-tuning Embeddings with NUDGE
Fine-tuning Gemma 2 9B with Unsloth
Fine-tuning Gemma 2 9B with PEFT and LoRA
What Matters in Transformers? Not All Attention is Needed
Advanced RAG with Knowledge Graphs: Using neo4j to implementate RAG with KG
Research Paper: NUDGE: Lightweight Non-Parametric Fine-Tuning of Embeddings for Retrieval
Stima Research 是一個 Stima Tech 所屬的 NLP 研究團隊,致力於探索 AI 的前沿技術。